第一章 函数、极限与连续
1、函数的有界性
2、极限的定义(数列、函数)
3、极限的性质(有界性、保号性)
4、极限的计算(重点)(四则运算、等价无穷小替换、洛达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界有极限定理)
5、函数的连续性
6、间断点的类型
7、渐近线的计算
第二章导数与微分
1、导数与微分的定义(函数可导性、用定义求导数)
2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表“三种类型”:幂指型、隐函数、参数方程高阶导数)
3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二))
第三章中值定理
1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)
2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)
3、积分中值定理
4、泰勒中值定理
5、费马引理
第四章 一元函数积分学
1、原函数与不定积分的定义
2、不定积分的计算(变量代换、分部积分)
3、定积分的定义(几何意义、微元法思想(数一、二))
4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)
5、定积分的计算
6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)
7、变限积分(求导)
8、广义积分(收敛性的判断、计算)
第五章 空间解析几何(数一)
1、向量的运算(加减、数乘、数量积、向量积)
2、直线与平面的方程及其关系
3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法