• 1
  • 2
  • 3
  • 4

齐鲁工业大学

当前位置:考研招生在线 > 考研备考  > 考研数学

2021考研数学:高数牢记定理(五)

时间:2020-07-22 10:55:35     作者:考研招生在线
对于考研数学来说,高数部分很重要,要想拿分,须把一些定理记牢。为此,小编整理了“2021考研数学:高数定理牢记(五)”的文章,希望对大家有所帮助。

  ►多元函数微分法及其应用

  1、多元函数极限存在的条件

  极限存在是指P(x,y)以任何方式趋于P0(x0,y0)时,函数都无限接近于A,如果P(x,y)以某一特殊方式,例如沿着一条定直线或定曲线趋于P0(x0,y0)时,即使函数无限接近某一确定值,我们还不能由此断定函数极限存在。反过来,如果当P(x,y)以不同方式趋于P0(x0,y0)时,函数趋于不同的值,那么就可以断定这函数的极限不存在。例如函数:f(x,y)=0(xy)/(x^2+y^2)x^2+y^2&ne0

  2、多元函数的连续性定义

  设函数f(x,y)在开区域(或闭区域)D内有定义,P0(x0,y0)是D的内点或边界点且P0&isinD,如果lim(x&rarrx0,y&rarry0)f(x,y)=f(x0,y0)则称f(x,y)在点P0(x0,y0)连续。

  性质(最大值和最小值定理)在有界闭区域D上的多元连续函数,在D上一定有最大值和最小值。

  性质(介值定理)在有界闭区域D上的多元连续函数,如果在D上取得两个不同的函数值,则它在D上取得介于这两个值之间的任何值至少一次。

  3、多元函数的连续与可导

  如果一元函数在某点具有导数,则它在该点定连续,但对于多元函数来说,即使各偏导数在某点都存在,也不能保证函数在该点连续。这是因为各偏导数存在只能保证点P沿着平行于坐标轴的方向趋于P0时,函数值f(P)趋于f(P0),但不能保证点P按任何方式趋于P0时,函数值f(P)都趋于f(P0)。

  4、多元函数可微的要条件

  一元函数在某点的导数存在是微分存在的充分要条件,但多元函数各偏导数存在只是全微分存在的要条件而不是充分条件,即可微=>可偏导。

  5、多元函数可微的充分条件

  定理(充分条件)如果函数z=f(x,y)的偏导数存在且在点(x,y)连续,则函数在该点可微分。

  6.多元函数极值存在的要、充分条件

  定理(要条件)设函数z=f(x,y)在点(x0,y0)具有偏导数,且在点(x0,y0)处有极值,则它在该点的偏导数为零。

  定理(充分条件)设函数z=f(x,y)在点(x0,y0)的某邻域内连续且有一阶及二阶连续偏导数,又fx(x0,y0)=0,fy(x0,y0)=0,令fxx(x0,y0)=0=A,fxy(x0,y0)=B,fyy(x0,y0)=C,则f(x,y)在点(x0,y0)处是否取得极值的条件如下:(1)AC-B2>0时具有极值,且当A0时有极小值(2)AC-B2

  7、多元函数极值存在的解法

  (1)解方程组fx(x,y)=0,fy(x,y)=0求的一切实数解,即可求得一切驻点。

  (2)对于每一个驻点(x0,y0),求出二阶偏导数的值A、B、C.(3)定出AC-B2的符号,按充分条件进行判定f(x0,y0)是否是极大值、极小值。
在线报名申请表
上传

上传格式要求:jpg、png、zip、docx、、doc、xlsx、xls、pptx、pdf(100MB),最多上传10个文件